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1. Introduction 
The paper discusses optimal synthesis of four-bar linkage. The general optimization problem is 
addressed in the form of nonlinear programming problem. The objective of this approach is to 
determine the optimal values of the mechanism links length, to minimize hinge forces, while the 
difference between the trajectory T  of the arbitrary point C  on the mechanism coupler link and the 
prescribed trajectory L  has to remain within the prescribed values. The global optimization method is 
used in order to find the global optimal solution. The procedure uses the Adaptive Grid Refinement 
algorithm. This algorithm is based on identification of feasible nodes in each iteration defining the 
solution set. Nodes far from the current optimum are pruned from the solution. The algorithm 
identifies optimal regions that satisfy predefined conditions, rather than only a single optimal point. 

2. Methods 

2.1 Mechanical model of four-bar linkage 
There are several notations useful for performing kinematic and kinetic analysis, amongst which the 
vector notation [Shabana 1994, Waldron and Kinzel 1999] is particularly suitable for analyzing planar 
four-bar mechanism depicted in Figure 1 by using symbolic manipulations [Wolfram 1996]. Thus, 
mechanism links are represented as vectors of length , 1,2,3,4ir i = , that make a closed vector loop. 
The link 1r  is fixed at the angle 1θ ; coordinates of the arbitrary point C  on the coupler are denoted by 

,C Cx y . The input parameter is the angle 2 2 ( )tθ θ= , on which the configuration of four-bar mechanism 
and subsequently all other coordinates describing configuration of mechanism are dependent. To solve 
the kinematic, the loop closure condition needs first to be written 

1 4 2 3+ = +r r r r . (1) 

Vector equation (1) can be rewritten as a system of two scalar equations having unknowns 3θ  and 4θ  

3 3 1 1 4 4 2 2

3 3 1 1 4 4 2 2

cos cos cos cos ,

sin sin sin sin .

r r r r

r r r r

θ θ θ θ
θ θ θ θ

= + −
= + −

 (2) 
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By squaring and adding (2) 3θ  is eliminated and after some additional algebraic manipulation the 

angle 4θ  is obtained in terms of the parameter 2θ . 

 

Figure 1. Notation of four-bar mechanism 

Figure 1 clearly demonstrates the relation between the angles 3θ  and 5θ : 
 

βθθ += 35 . (3) 

The position of the arbitrary point C  on coupler is then given by equation 
 

52 rrr +=C . (4) 

In order to perform kinetic analysis, the discretization approach [Shabana 1994] is used. Figure 1 
depicts, how mechanism links are considered as free bodies. An external force CF  is applied in the 

point C  and an external moment AM  is applied in the point A . Dynamic equilibrium equations are 
developed for each body. Newton's equation describes the motion of the center of the body mass 
 

iTi
j

j m aF∑ = , (5) 

while Euler's equation describes rotary motion of the body caused by the forces and moments acting 
on the body about the center of mass 
 

iiT
k

k
j

j
Tj
iT aJMFr =+× ∑∑ . (6) 

In (6) iTJ  represents the inertia tensor of the i -th link. (5)-(6) can be rearranged [Shabana 1994] in 
the following matrix form: 
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 (7) 

(1)-(4), together with (5)-(7), fully describe the four-bar mechanism motion and forces producing 
motion or forces that are the result of prescribed motion and should be understood in future 
formulations as system equations [Hsieh and Arora 1984]. 

2.2 Optimization problem 
The majority of engineering optimum design problems [Hsieh and Arora 1984] may be written in a 
form of a non-linear programming problem 

( )

( ) [ ]
( ) [ ]

0

1

2

       min , R

subject to

        , , 0, 1 , 0,

        , , 0, 1 , 0,

        , , 1 .

n

i

j

j j j

f

g t i m t

h t j m t
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τ

τ

∈

≤ ≤ ≤ ∈

= ≤ ≤ ∈

 ∈ ≤ ≤ 

p p

p u

p u
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 (8) 

In (8) p  represents parameter or design variable vector and u  is system variable vector. The objective 

function 0 ( )f p  is to be minimized so that it satisfies constraint functions ig  defining feasible domain 

D , and system equations jh  represent the mathematical model of the considered mechanical system. 

The solution of formulation (8) is optimal design variable vector ∗p . To perform optimal synthesis of 
the four-bar mechanism with the help of nonlinear programming formulation we define the design 
variable vector and the system variable vector as 

[ ] [ ] [ ] [ ]1 2 3 4 5 1 2 3 4 1 1 2, , , , : , , , , , , : ,
T T T T

C Cp p p p p r r r r u u x yθ= = = =p u , (9) 

The following formulation is suitable to minimize the hinge forces in joints , , ,A B D E : 

( ) [ ]

( ) [ ] [ ]
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( ) ( ) ( )

5

1 1 2 max

2 3 4 1 2

3 2 3 1 4
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In (10) the difference between the trajectory T  and the prescribed linear trajectory L  is defined as 

[ ] 1 2 3
1 2 2 2

1 2

( ), ( ) ( , ) :
b x b y b

u t u t x y
b b

+ +
− =

+
T L , (11) 

where 1b , 2b  and 3b  are constant parameters of L . Constraint function 1( , )g tu  ensures the 

difference (11) to be less than maxδ . Further, constraint functions 2 ( )g p  and 3 ( )g p  represent well 
known Grashoff conditions, that reflect the restriction on the leading mechanism links to perform only 
oscillatory motion. As the length of any mechanism link cannot be negative and the frame dimension 
being limited to a certain maximum value, the upper and lower bounds on design variables are 
imposed. Formulation (10) is not soluble by nowadays known methods of mathematical programming. 
The issue of this problem is operator max in objective function and time dependent constraint function 

1( , )g tu . Therefore, it is necessary to transform (11) in a way to get an adequate soluble standard 

form. As shown in [Hsieh and Arora 1984], we involve an artificial design variable 6p  and define 
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[ ]    , , 1 6,m m mp p p m∈ ≤ ≤( )%  (12) 

where 

[ ]1 2 3 4 5 6, , , , ,
T

p p p p p p=p%  (13) 

represents the extended design variable vector, while 1, 1,...,jt j n=  and 2,...,1, nktk =  are local 
maxima of constraint functions.  
As the constraints in (12) are of rather complicate form, determining of local maxima jt  and kt  would 

be a very demanding task. Instead, discretization of interval [ ]τ,0∈t  on 3n  equidistant points is used: 

( ) .,and,,,1,
1

1 3
3

0 lkljnl
n

lttl ===
−

−+= …τ
 (14) 

In this research the formulation (12) is solved by using global optimization method. The Adaptive 
Grid Refinement algorithm (AGR) procedure is applied [5]. The AGR is in essence a generalised-
descent method, which works as follows. The interval to be searched for a solution is grided into n 
initial grid nodes with equivalent distance. At each node the objective function is evaluated. The nodes 
with the lowest objective function values are kept, while the rest are excluded from the forthcoming 
procedure. At the each node kept, the new nodes are evaluated on each side, at one-third the distance 
between the first set of nodes. The process of grid refinement continues until the stopping criterion is 
met, when all calculated optimal nodes are displayed. With this procedure the population of nodes in 
the working set is moving downhill but over multiple possible regions and directions in each iteration. 
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The same procedure is used for any of the design variables, however the number of grid nodes and 
computation effort increases exponentially by the number of design variables. The algorithm is very 
stable, derivative-free and could also handle discontinuities and calculations in the proximity of a 
complex constraint boundary. 

3. Numerical example and conclusions 
As an example, the optimal synthesis of hydraulic support [Oblak et al. 1998] is performed. The 
hydraulic support, depicted on Figure 2, is a part of mining industry equipment, considered to protect 
the working environment. The aim of the research is optimal design of the leading four-bar mechanism 
in order to ensure desired motion of hydraulic support top part with minimal transversal 
displacements. Transversal displacements have to be small enough to prevent collision of the support 
with other machinery and equipment. The kinematics of hydraulic support could be modeled with 
synchronous motion of the driving mechanism FGDE  and the leading mechanism ABDE . The 
decisive influence on motion of hydraulic support has the leading four-bar mechanism ABDE . Also, 
the hinge loads of the same mechanism are critical. 

 

Figure 2. Hydraulic support 

The optimal synthesis of this mechanism is considered to ensure the hinge forces to be as low as 
possible, while the trajectory of the point C  should be max 20 mmδ ≤  displaced from either side of 

the prescribed vertical path ( ), : 65 mmx y x= =L . The applied external load force is 

kN4.1178=CF . The optimal leading four-bar mechanism ABDE  is specified by parameters vector 

[ ] ( )728.8,1399.5,407.4,1391.7, 0.756 mm rad
T∗ = −p . The trajectory of the point C  and the 

hinge force in E  are depicted in Figure 3 as solid lines. Comparing the previous existing solution 
(dashed lines) [6] with calculated optimal solution (solid lines) one could see a certain increase of 
transversal displacements from max 12.2 mmx∆ =  to max 25.3 mmx∗∆ = . Maximal hinge forces 

*
max 1394.8 kNAF = , *

max 1376.1 kNBF = , *
max 1395.3 kNDF =  and *

max 1395.0 kNEF =  for 

optimal design vector ∗p  are significantly decreased for over 18 %  in the critical joints D  and E , 

comparing to the previous existing solution, where kN3.1062max =AF , kN1.1062max =BF , 

kN6.1711max =DF  and kN0.1712max =EF . The external load is therefore more equably distributed 
between joints, which consequently means improved and safer design. 
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Figure 3. Trajectory of point C  and hinge force EF  

The example shows, that with the global optimization approach it is possible to obtain acceptable 
design of four-bar mechanism, so that hinge forces are minimized, while the difference between the 
prescribed trajectory and the trajectory of an optionally chosen point C  on the coupler remains within 
the acceptable range. Using the proposed methodology one could obtain the optimal design without 
exercising mechanical model for various parameter values, while some other design features could be 
incorporated into formulation at any time. 
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