
12TH INTERNATIONAL DEPENDENCY AND STRUCTURE MODELLING CONFERENCE, DSM’10
22 – 23 JULY 2010, CAMBRIDGE, UK

PATH-BASED AND PATTERN-BASED APPROACHES
FOR CHANGE MANAGEMENT
Simon Li and Elmira Rajinia
Concordia Institute for Information Systems Engineering, Concordia University, Canada

Keywords: change management, decision making

1 INTRODUCTION
When changes are required for an existing complex system, there can be several feasible change
options that can be applied to achieve the change requirements. Due to the complexity of the original
system, it is not trivial to choose an appropriate change option. This paper is intended to address this
issue in two steps. Firstly, via the matrix-based modelling techniques, we characterize the possible
options to address a change scenario. Secondly, we apply different quantitative approaches to help
select the appropriate option for change management.
In general, product design and development can be envisioned as a system of interconnected product,
process and organization entities (e.g., product components, process activities and project teams)
(Eppinger & Salminen, 2001). One essence of matrix-based modelling in this context stems from the
explicit description of product (or process) entities and characterization of their dependency
relationships. As the matrix models (e.g., design structure matrix and domain mapping matrix) clearly
shows the relationships between two entities, they help us to understand how one entity would
influence another entity due to changes. Then, this dependency information becomes the major means
to evaluate different change options due to some initial changes in a system.
In literature, dependency-based (especially using matrix) models have been used to manage and
control the propagation of changes. Ollinger and Stahovich (2004) have used a causal model to
capture the causal dependency among design parameters for managing design changes. Clarkson et al.
(2004) used likelihood, impact and risk DSMs to perform risk management for design changes. Chen
et al. (2007) and Li & Chen (2007) developed a model-based rapid redesign methodology that is able
to control complex design change propagation using their matrix-based decomposition techniques.
Among these research efforts, this paper presents the path-based and pattern-based approaches to
formulate and evaluate the change options in change management. The path-based approach uses the
dependency information available in the matrix models to trace the propagation paths for different
change options. This path-tracing effort can be utilized to evaluate the quality of different change
options. Alternatively, the pattern-based approach intends to identify the matrix-based structures of a
system to estimate the scope of change propagation for different change options. We will present two
cases in the following to illustrate the path-based and pattern-based approaches respectively for
change management.

2 ILLUSTRATION OF THE PATH-BASED APPROACH: SOFTWARE
PROGRAM DEBUGGING
The software program in this illustration is a guess-the-number game, which is obtained from Sierra
and Bates (2005). The game starts from generating three random integers between 1 and 9. Then, the
player is asked to guess the values of these three numbers. At the end, the program will return the
number of guesses that the player has made. This is an object-oriented program (OOP), and 25 OOP
entities are identified, including different classes, methods and interfaces. Then, a 25×25 DSM is
constructed to capture the dependency of these OOP entities. The DSM is shown in Figure 1. Each
matrix entry, denoted as mij, is referred to the potential change on the ith entity due to the change of
the jth entity.

279

A program’s bug is found in the original program. Due to this bug, the program will increase the
number of hits every time the user guesses one of the generated numbers, even if that number had
already been guessed. To remove this bug, we need to distinguish the case if the user has repeatedly
guessed the same number generated by the program. If this is the case, the program will not count it
as a new hit. To correct this bug, four change options are proposed (Sierra and Bates, 2005), and they
are summarized in Table 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Figure 1. DSM of 25 OOP entities

Table 1. Four options to modify and debug the program

Option 1 A second array is created. At each time when the user makes a guess, the modified
program stores the guessed number in the second array. When the user makes
another guess, the program will check the second array for any repeated guesses.

Option 2 The original array would be kept but the values of any correctly guessed numbers in
the array would be changed to -1. In this option, there is only one array to check
and manipulate.

Option 3 The location of each number that is guessed correctly should be removed from the
original array, and the array should be modified to a smaller one. Since the size of
an array cannot be changed, we have to make a new array and copy the remaining
cells from the old array to the new and smaller array.

Option 4 Use a specialized function from the Java library to perform the modification in the
Option 3.

The options shown in Table 1 indicate that different initial OOP entities need to be changed for
debugging. The decision question is which option we should select to debug the program. The
selection strategy in this case is to select the option that has the minimum changes on the original
program. In the path-based approach, we first identify the entities that correspond to the initial
changes. For instance, the Option 1 needs to modify the entities #10 and #15 (based on the DSM
labels) to create the second array and update the check conditions. By checking the 10th column of the
DSM in Figure 1, we found that the entity #10 will potentially affect the entity #4. In the same way,
we found that the entity #15 will potentially affect the entities #9 and #10. The propagation can
continue by inspecting the next affected entities due to the changes of entities #4, #9 and #10. Figure
2 illustrates the propagation paths pertaining to Option 1.
After identifying the propagation paths, it is assumed that the effect of the initial changes will decrease
along the propagation paths. That is, the entities located farther on a propagation path (or at a higher
propagation level) will have less chance to be actually affected after the implementation of all the
changes. In this case, we denote the propagation probability as the probability that the change
propagation takes place due to direct dependency. In this example, we set the propagation probability

280

equal to 0.5 for simplicity. That is, we have a half chance that the change of one entity will directly
modify another immediate entity on the propagation path. Another simplification in this example is to
limit the length of the change propagation paths up to three levels. Based on this probabilistic
approach, we can estimate the expected numbers of other OOP entities that are affected by the initial
changes.
Table 2 summarizes the results of this case. The column of estimated propagation scope lists the
normalized rating (from 0 to 1) of the scope of change propagation for each option. The higher rating
value indicates the larger scope of changes. All four options are eventually implemented for
comparison in this case study. The last column of Table 2 records the number of lines that are actually
modified according to the corresponding change option. As seen, the order of the estimated
propagation scope follows the order of the actual number of lines modified in the program. This result
is quite satisfactory.

Figure 2. Change propagation paths of Option 1

Table 2. Estimation and verification of change results

Change option Estimated propagation scope Number of modified lines of codes
#1 0.383 8
#2 0.274 3
#3 0.673 14
#4 1.000 20

3 ILLUSTRATION OF THE PATTERN-BASED APPROACH: RELIEF VALVE
REDESIGN
The relief valve example is obtained from Kannapan and Marshek (1993), and we have modelled this
example using 29 design functions and 49 design parameters. Then, a 29×49 DMM, shown in Figure
3, is constructed to capture the dependency between functions and parameters. In particular, the rows
of the DMM correspond to the design functions, and the columns correspond to the design parameters.
Then, each matrix entry, mij, indicates the presence of dependency. That is, if the jth parameter is
related to the ith function, the entry mij is equal to 1 (or shaded as shown in Figure 3). Otherwise, the
entry mij is equal to 0 (or un-shaded).
Given the matrix-based design model, new requirements are invoked to improve some design
parameters. The verbal statements of the change requirements are summarized in Table 3, which
shows that the parameters of Columns 9, 19 and 26 (symbolized C9, C19 and C26) need to be modified
and thus labelled as target parameters. By checking the DMM, all the functions that depend on them
are considered the target functions. Then, all the parameters that these functions depend on are also
labelled as the target parameters. The indices of the target function rows and the target parameter
columns are shaded in the DMM in Figure 3.
Based on the DMM, if changes occur to the parameter C19, the function R4 (i.e., the function labelled
with ‘4’ in the row) will be affected and this R4 will potentially affect other parameters (e.g., C16 and
C41). In change management of this case, we will have the options of which parameters (C16 and/or
C41) should be relaxed and modified to achieve the new requirements. Different options can lead to
different paths and scopes of change propagation.

281

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Figure 3. DMM of 29 functions (rows) and 49 parameters (columns)

Table 3. Summary of initial change requirements

C9 Increase seal thickness for more secure fluid flow seal-off
C19 Decrease valve head loss to below a new maximum allowable value
C26 Decrease allowable helical spring material stress for greater valve

reliability and overall safety

In the above context, the purpose of the pattern-based approach is to estimate the scopes of change
propagation using matrix patterns. Using the decomposition method reported in Chen et al. (2007),
five different patterns are generated and shown in Figure 4. In brief, these patterns are obtained by
first clustering the rows and columns of the original matrix, thus yielding several block-angular matrix
solutions. Then, the blocks that contain the target rows and columns are highlighted to form a pattern.
Each pattern essentially conveys two pieces of information: matrix-based structure and distribution of
target entities. The matrix-based structure shows the formation of blocks (along the diagonal) and the
blocks’ interactions (i.e., interaction columns on the left and/or interaction rows on the top). In these
structures, target entities are distributed in different ways. For better visualization, the blocks that
contain target entities are shaded in darker colour in Figure 4.
While these target entities are the initial points to propagate changes, the matrix-based structures help
to investigate how the changes will be confined within a block or propagated to other blocks via the
interactions parts. For instance, Pattern 1 in Figure 4 shows that two blocks contain target entities (as
highlighted). These blocks essentially contain the subsets of design functions and parameters that will
likely be affected in redesign. Yet, if the interaction parameters in Pattern 1 are fixed in their values,
changes can be confined in these two target blocks. In this case, we intend to estimate the scope of
change propagation entailed in matrix patterns via two factors: intensity and interdependency.
The first factor, intensity, focuses on the size of the blocks and the interaction parts that contain target
entities. If the size of these “target” blocks and interactions is larger, the value of the intensity index
will be higher. In contrast, the second factor, interdependency, focuses on the coupling relationships
between blocks. If the interactions between blocks are heavy, the value of the interdependency index
will be higher. The details of these two indices (e.g., formulations) can be found in Chen et al. (2007).
Table 4 summarizes the values of normalized intensity and interdependency indices for each pattern.
From Table 4, we observe that Pattern 1 and Pattern 5 pertain to a trade-off relationship. First of all,
Pattern 1 (see Figure 4) has relatively large target blocks, leading to a high intensity value (i.e., 0.92).
In contrast, Pattern 5 has many interaction rows and columns, thus leading to a high interdependency
value (i.e., 1.00). In the case of applying even weights on intensity and interdependency values,
Pattern 5 is selected. The justification and validation of this selection can be found in Li and Chen
(2007).

282

31 14 4 24 1 46 21 6 37 5 32 47 19 9 41 16 7 13 42 49 39 43 48 40 45 29 17 33 3 11 28 38 44 36 22 35 2 23 26 34 18 15 25 30 20 8 10 27 12

3
4
7
5
6

10
2

29
27
26
8

28
11
9

13
12
25
22
1

15
14
16
23
24
17
20
18
21
19

Pattern 1

13 4 29 24 1 11 28 38 37 22 35 10 47 19 9 41 16 7 31 14 42 49 39 43 48 40 45 46 17 33 3 21 44 6 36 5 2 23 26 34 18 32 15 25 30 20 8 27 12
6

10
2

29
8

28
11
9

25
1

23
24
18
15
3
4
7
5

27
26
13
12
22
14
16
17
20
21
19

Pattern 2
24 4 37 1 6 5 29 38 47 19 9 41 16 7 13 31 14 42 49 39 43 48 40 45 46 17 33 3 21 11 28 44 36 22 35 2 23 26 34 18 32 15 25 30 20 8 10 27 12

8
2

29
25
23
3
4
7
5
6

10
27
26
28
11
9

13
12
22
1

15
14
16
24
17
20
18
21
19

Pattern 3

41 23 16 4 37 24 31 13 29 38 22 35 10 47 19 9 7 14 42 49 39 43 48 40 45 1 46 17 33 3 21 11 28 44 6 36 5 2 26 34 18 32 15 25 30 20 8 27 12
15
25
8

23
10
18
1
6
3
4
7
5
2

29
27
26
28
11
9

13
12
22
14
16
24
17
20
21
19

Pattern 4
19 9 41 16 14 23 26 34 46 21 5 32 13 48 40 45 1 38 6 37 22 35 47 7 31 42 49 39 43 4 29 24 17 33 3 11 28 44 36 2 18 15 25 30 20 8 10 27 12

26
1

25
6

12
23
10
2

24
28
15
17
4
7

16
3
5

29
27
8

11
9

13
22
14
20
18
21
19

Pattern 5

Figure 4. Five patterns for change management

Table 4. Intensity and interdependency values of five patterns

 Intensity Index Interdependency Index
Pattern 1 0.92 0.53
Pattern 2 0.81 0.62
Pattern 3 1.00 0.61
Pattern 4 0.79 0.78
Pattern 5 0.28 1.00

4 CONCLUSION
This paper focuses on the decision aspect in change management. When changes are required towards
a complex system, it can be the case that several change options are available to execute the changes.
This paper discusses the path-based and pattern-based approaches to estimate the scopes of change
propagation. At this preliminary stage of research, the future work includes the following:

� More case studies to examine the nature of path-based and pattern-based approaches
� Effective algorithms to generate paths and patterns in change management
� Comprehensive software tools to support path-based and pattern-based approaches in change

management
At the current stage, we are studying the proposed change management approaches in the context of
software systems, project management, and manufacturing systems.

283

REFERENCES
Chen, L., Macwan, A., and Li, S. (2007). Model-Based Rapid Redesign Using Decomposition

Patterns. Journal of Mechanical Design, 129, 283-294.
Clarkson, P.J., Simons, C., and Eckert, C. (2004). Predicting Change Propagation in Complex Design.

Journal of Mechanical Design, 126, 788-797.
Eppinger, S.D. and Salminen, V. (2001). Patterns of Product Development Interactions. Proceedings

of International Conference on Engineering Design (ICED), Glasgow, Aug. 21-23.
Kannapan, S.M. and Marshek, K.M. (1993). An Approach to Parametric Machine Design and

Negotiation in Concurrent Engineering. In A. Kusiak (Ed.), Concurrent Engineering:
Automation, Tools and Techniques, John-Wiley, New York, pp. 509-533.

Li, S. and Chen, L. (2007). Towards Rapid Redesign – Pattern-Based Redesign Planning for Large-
Scale and Complex Redesign Problems. Journal of Mechanical Design, 129, 227-233.

Ollinger, G.A. and Stahovich, T.F. (2004). RedesignIT – A Model-Based Tool for Managing Design
Changes. Journal of Mechanical Design, 126, 208-216.

Sierra, K., and Bates, B. (2005). Head First Java, O’Reilly Media, Inc., Sebastopol, CA, USA.

Contact: Simon Li
Concordia University
Concordia Institute for Information Systems Engineering
1455 de Maisonneuve Blvd. West, S-EV 007.648
Montreal, Quebec
Canada, H3G 1M8
Phone 1-514-848-2424 ext. 5621
Fax 1-514-848-3171
e-mail lisimon@ciise.concordia.ca

284

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Path-Based and Pattern-Based
Approaches for Change Management

Simon Li
Elmira Rajinia

Concordia Institute for Information Systems Engineering, Concordia Co co d a st tute o o at o Syste s g ee g, Co co d a
University, Canada

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

IndexIndex

• Introduction
• Path based Approach• Path-based Approach
• Pattern-based Approach
• Summary and Future Works

12th International DSM Conference 2010- 2

285

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

IntroductionIntroduction

• Changes are inevitable in systems.
• Several feasible change options can be available to address one change• Several feasible change options can be available to address one change

scenario.
• Due to the complexity of the original system, it is not trivial to choose an

appropriate change optionappropriate change option.
• Complex system � a system of interconnected product, process and

organization entities
– Matrix-based modelling: explicit description of these entities and their

dependency relationships
– To understand how one entity would influence another entity due to

changes
• Paper’s purpose:

– Present the path-based and pattern-based approaches to formulate ese e pa based a d pa e based app oac es o o u a e
and evaluate the change options in change management

12th International DSM Conference 2010- 3

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Path-Based and Pattern-Based ApproachesPath Based and Pattern Based Approaches

• Question: how to estimate the scope of change propagation given a
specific change on a systemspecific change on a system

• Path-based approach
– Use the dependency information available in the matrix models to

trace the propagation pathstrace the propagation paths.
• Pattern-based approach

– Identify the matrix-based structures of a system to estimate the scope
of change propagation.

12th International DSM Conference 2010- 4

286

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Path-Based Approach – The ExamplePath Based Approach The Example

• Software: a guess-the-number game
The game starts from generating three random integers between 1– The game starts from generating three random integers between 1
and 9.

– Then, the player is asked to guess the values of these three numbers.
Th ill t th b f th t th l h– The program will return the number of guesses that the player has
made.

• The bug
– The program will increase the number of hits every time the user

guesses one of the generated numbers, even if that number had
already been guessed.

• Four options are available to fix this bug.
• Change Management Question: which option we should select to

minimize the modifications of the original software program?e e od ca o s o e o g a so a e p og a

12th International DSM Conference 2010- 5

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Path-Based Approach – Options to Remove the BugPath Based Approach Options to Remove the Bug
Option 1 - Create a second array.

- Store the guessed number in the second array every time when
the user makes a guess.

- When the user makes another guess, the program will check
the second array for any repeated guesses.

Option 2 - Keep the original array but the values of any correctly guessed
numbers in the array would be changed to -1.
There is only one array to check and manipulate- There is only one array to check and manipulate.

Option 3 - The location of each number that is guessed correctly should
be removed from the original array, and the array should be
modified to a smaller one.

- Since the size of an array cannot be changed, we have to
make a new array and copy the remaining cells from the old
array to the new and smaller array.

Option 4 - Use a specialized function from the Java library to perform the
modification in the Option 3

12th International DSM Conference 2010- 6

modification in the Option 3.

287

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Path-Based Approach – The DSMPath Based Approach The DSM

• This is an object-oriented program (OOP)
• 25 OOP entities are identified including different classes methods and• 25 OOP entities are identified, including different classes, methods and

interfaces.
• A 25×25 DSM is constructed to capture the dependency of these OOP

entitiesentities.
• Each matrix entry, denoted as mij, is referred to the potential change on

the ith entity due to the change of the jth entity.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 251 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1
2
3
4
5
6
77
8
9
10
11
12
13
1414
15
16
17
18
19
20
21

12th International DSM Conference 2010- 7

21
22
23
24
25

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Path-Based Approach – Change Scope EstimationPath Based Approach Change Scope Estimation

• Each change option initially triggers changes of different OOP entities.
• Via the DSM trace the change propagation path from initial changes to• Via the DSM, trace the change propagation path from initial changes to

other OOP entities.
• For example, we have the following tracing paths for Option 1:

• Estimation of the scope of change propagation:• Estimation of the scope of change propagation:
– The effect of the initial changes will decrease along the propagation

paths.
P i b bili � h b h i i ill– Propagation probability � chance about changing one entity will
directly modify another entity

– Estimate the expected numbers of OOP entities that are affected by

12th International DSM Conference 2010- 8

the initial changes

288

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Path-Based Approach – The ResultsPath Based Approach The Results

• Four change options have been implemented to verify the results.
• The order of the estimated propagation scope follows the order of the• The order of the estimated propagation scope follows the order of the

actual number of lines modified in the program. This result is quite
satisfactory.

Change
Option

Estimated Propagation
Scope

Number Of Modified Lines Of
CodesOption Scope Codes

#1 0.383 8

#2 0 274 3#2 0.274 3

#3 0.673 14

#4 1 000 20#4 1.000 20

12th International DSM Conference 2010- 9

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Pattern-Based Approach – The ExamplePattern Based Approach The Example

• The example is about the redesign of a relief valve system.
• The example consists of 29 design functions and 49 design parameters• The example consists of 29 design functions and 49 design parameters.
• Redesign requirements:

– Increase seal thickness for more secure fluid flow seal-off (related to
th t C)the parameter C9).

– Decrease valve head loss to below a new maximum allowable value
(related to the parameter C19).

– Decrease allowable helical spring material stress for greater valve
reliability and overall safety (related to the parameter C26).

• Change Management Question: which parameters we should modify in g g p y
order to achieve the redesign requirements.

12th International DSM Conference 2010- 10

289

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Pattern-Based Approach – The DMMPattern Based Approach The DMM

• A 29×49 DMM is constructed to capture the dependency between 25
functions and 49 parametersfunctions and 49 parameters.

• Each matrix entry, mij, indicates the presence of dependency. That is, if
the jth parameter is related to the ith function, the entry mij is shaded.

• The shaded row / column labels indicate the target entities• The shaded row / column labels indicate the target entities.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

1
2
3
4
55
6
7
8
9
10
11
1212
13
14
15
16
17
18
19
20
21
22
23
24
25
26

12th International DSM Conference 2010- 11

27
28
29

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Pattern-Based Approach – Matrix PatternsPattern Based Approach Matrix Patterns

• How does a matrix pattern help for change management?
Target entities indicate the initial points to propagate changes– Target entities indicate the initial points to propagate changes.

– The target blocks define the subsets of “likely affected” entities.
– The interactions help to control the propagation.

P tt 1

31 14 4 24 1 46 21 6 37 5 32 47 19 9 41 16 7 13 42 49 39 43 48 40 45 29 17 33 3 11 28 38 44 36 22 35 2 23 26 34 18 15 25 30 20 8 10 27 12
3
4
7
5
6

10
2

29
27
26
8

28
11 Pattern 111
9

13
12
25
22
1

15
14
16
23
24
17
20

• How to get matrix patterns?
– Step 1: cluster the matrix’s rows and columns to form block-angular

18
21
19

matrices (i.e., blocks on the diagonal with interaction columns on the
left and/or interaction rows on the top)

– Step 2: identify the locations of target entities in the block(s) and the

12th International DSM Conference 2010- 12

p y g ()
interactions

290

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Pattern-Based Approach – Some Other PatternsPattern Based Approach Some Other Patterns

13 4 29 24 1 11 28 38 37 22 35 10 47 19 9 41 16 7 31 14 42 49 39 43 48 40 45 46 17 33 3 21 44 6 36 5 2 23 26 34 18 32 15 25 30 20 8 27 12
6

10
2

29
8

28

24 4 37 1 6 5 29 38 47 19 9 41 16 7 13 31 14 42 49 39 43 48 40 45 46 17 33 3 21 11 28 44 36 22 35 2 23 26 34 18 32 15 25 30 20 8 10 27 12
8
2

29
25
23
328

11
9

25
1

23
24
18
15
3
4
7
5

27

3
4
7
5
6

10
27
26
28
11
9

13
12
22

26
13
12
22
14
16
17
20
21
19

1
15
14
16
24
17
20
18
21
19

Pattern 2 Pattern 3
41 23 16 4 37 24 31 13 29 38 22 35 10 47 19 9 7 14 42 49 39 43 48 40 45 1 46 17 33 3 21 11 28 44 6 36 5 2 26 34 18 32 15 25 30 20 8 27 12

15
25
8

23
10
18
1

19 9 41 16 14 23 26 34 46 21 5 32 13 48 40 45 1 38 6 37 22 35 47 7 31 42 49 39 43 4 29 24 17 33 3 11 28 44 36 2 18 15 25 30 20 8 10 27 12
26
1

25
6

12
23
10

Pattern 2 Pattern 3

6
3
4
7
5
2

29
27
26
28
11
9

13
12

2
24
28
15
17
4
7

16
3
5

29
27
8

1112
22
14
16
24
17
20
21
19

11
9

13
22
14
20
18
21
19

Pattern 4 Pattern 5

12th International DSM Conference 2010- 13

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Pattern-Based Approach – The Selection ProblemPattern Based Approach The Selection Problem

• Each pattern indicates a unique way to control the change propagation.
• The selection problem� which pattern should be selected for redesign?• The selection problem � which pattern should be selected for redesign?
• Estimation of the scope of change propagation is done via two factors:

intensity and interdependency.
I t it• Intensity
– Focus on the size of the blocks and the interaction parts that contain

target entities.
– If the size of these “target” blocks and interactions is larger, the value

of the intensity index will be higher.
• Interdependencyp y

– Focus on the coupling relationships between blocks.
– If the interactions between blocks are heavy, the value of the

interdependency index will be higherinterdependency index will be higher.

12th International DSM Conference 2010- 14

291

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Pattern-Based Approach – The Example ResultsPattern Based Approach The Example Results

Intensity Index Interdependency Index
Pattern 1 0.92 0.53
Pattern 2 0.81 0.62
Pattern 3 1.00 0.61
Pattern 4 0.79 0.78
P tt 5 0 28 1 00Pattern 5 0.28 1.00

31 14 4 24 1 46 21 6 37 5 32 47 19 9 41 16 7 13 42 49 39 43 48 40 45 29 17 33 3 11 28 38 44 36 22 35 2 23 26 34 18 15 25 30 20 8 10 27 12
3
4
7
5
6

10
2

19 9 41 16 14 23 26 34 46 21 5 32 13 48 40 45 1 38 6 37 22 35 47 7 31 42 49 39 43 4 29 24 17 33 3 11 28 44 36 2 18 15 25 30 20 8 10 27 12
26
1

25
6

12
23
102

29
27
26
8

28
11
9

13
12
25
22
1

15

10
2

24
28
15
17
4
7

16
3
5

29
27
8

14
16
23
24
17
20
18
21
19

11
9

13
22
14
20
18
21
19

Pattern 1 Pattern 5
- Large target blocks � high

intensity
- Small interactions � low

i t d d (0 53)

- Target entities grouped in interaction
only � low intensity (0.28)

- Large interactions with all target
titi � hi h i t d d

12th International DSM Conference 2010- 15

interdependency (0.53) entities � high interdependency

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Summary and Future WorksSummary and Future Works

• There can be more than one option to fulfill the initial change
requirements (e g debug a software program and redesign a mechanicalrequirements (e.g., debug a software program and redesign a mechanical
device).

• Based on some matrix models, the scope of change propagation can be
estimated for different change optionsestimated for different change options.

• The path-based and pattern-based approaches have been used to
perform the estimation of change propagation.
F t k• Future works
– More case studies to examine the nature of path-based and pattern-

based approaches
– Effective algorithms to generate paths and patterns in change

management
– Comprehensive software tools to support path-based and pattern-

based approaches in change management

12th International DSM Conference 2010- 16

292

