13™ INTERNATIONAL DEPENDENCY AND STRUCTURE MODELLING CONFERENCE, DSM’11
CAMBRIDGE, MASSACHUSETTS, USA, SEPTEMBER 14 — 15, 2011

A MORE FLEXIBLE WAY OF MODELING STRUCTURE
WITH MULTIPLE DOMAINS

Sebastian Kortler, Bergen Helms, Kristina Shea and Udo Lindemann
Institute of Product Development, Technische Universitdt Minchen, Germany

ABSTRACT

During the planning and development process of innovative products diverse changes of the product
architecture occur. Changes are often discovered in the late phases of the product development process
and lead to costly modifications of all affected parts of the system and consequently into change
impacts of used models. The widely used hierarchically modeling approach is one particular limitation
of common modeling techniques. Promising combinations of domains which are not considered in
early modeling phases cannot easily integrated in the model. Therefore, this paper presents a more
flexible modeling technique.

Keywords: MDM, flexible modeling, structural complexity management

1 INTRODUCTION

The complexity of products, development processes and organizational structures is constantly
increasing. The reasons therefore are manifold, like: increasing complexity of the customers’
requirements; increasing pressure of time and cost in the manufacturing and development processes;
integration of multiple domains within one product, like mechanics, software, electronics or service
(Lindemann, 2006; Pulm, 2004; Leimeister and Glauner, 2008; Abramovici and Schulte, 2007).
During the planning and development process of innovative products, diverse changes of the product
architecture occur or are inevitable. For instance, requirements’ changes are often discovered in the
late phases of the development process (Lindemann and Reichwald, 1998) and results into a costly
modification of all affected parts of the system. The widely used hierarchically modeling approach is
one particular limitation of common modeling techniques not allowing for the required degree of
flexibility. Especially the initial assigning of used elements to domains and the combination of
domains in early modeling phases may lead to restrictions in later analysis of the system’s structure
(Kohn and Lindemann, 2010). The research presented in this paper aims to tackle this challenge with a
more flexible way of modeling structure with multiple domains.

This paper is structured as follows: After a review of common hierarchical modeling techniques in
Section 2, the authors present the essentials of a more flexible modeling approach in Section 3. Next, a
software implementation of the approach is presented in Section 4. Finally, the paper concludes with
an outlook and a conclusion in Section 5.

2 COMMON MODELLING APPROACHES

Research on matrix based complexity management has come a long way. Originating from a process
focus with the first published formulation of a DSM (Steward, 1981) a whole scientific community has
developed around this research area. The DSM is a means to model and analyze dependencies of one
single type within one single domain, e.g. geometrical adjacency relations between components.
Browning (2001) classifies four types of DSMs to model different types of problems: component-,
team, activity-, and parameter-based DSMs. However, many other classifications exist (e.g. in Maurer,
2007) nowadays.

Danilovic and Browning (2007) have extended DSM to DMM, i.e. Domain Mapping Matrices. The
goal was to enable matrix methodology to include not just one domain at a time but to allow for the
mapping between two domains, as previously postulated e.g. by Yassine (2003). Lindeman et al.
(2008) have taken this approach further to model whole systems consisting of multiple domains, each
having multiple elements, connected by various relationship types by combining DSM and DMM
methodologies under the framework of Structural Complexity Management (StCM). The authors refer

19

to this approach as Multiple Domain Matrix (MDM). StCM provides a five-step procedure that
supports users in system definition, information acquisition, deduction of indirect dependencies,
structure analysis and the interpretation of structural criteria depending on the respective system’s
context. During the first step of system definition, the domains of the model are selected according to
the modeling hypotheses and the scope of the later analysis or according to the existing information
sources (Lindeman et al., 2008). In the following steps, promising combinations of domains are
derived. Finally, the structure of these combinations is analyzed. In this step lies the limitation of the
hierarchical five-step procedure. If changes occur during the product development process, such as
requirements’ changes in the late phases of the development process, (arising of further information
sources, changes of requirements or modified goals) the user needs to apply changes in all phases of
the five-step procedure. For example, promising combinations of domains which are discovered in late
modeling phases cannot easily be considered. Nevertheless, as especially the last DSM conferences
have shown, the MDM approach integrating multiple views “domains” becomes more and more
accepted to manage several perspectives onto a system.

3 THE FUNDAMENTALS OF A MORE FLEXIBLE MODELLING TECHNIQUE
The main, undermining driver of the proposed modeling approach is the possibility of modeling
elements of different levels of abstraction at the same time. Thus, the user can define domains,
relations between domains, relation types and relations between elements in any phase of the modeling
process. Additionally, instances of the modeled components (domains, elements and relation types)
shall be (re-)used in different matrices, i.e. in different contexts. But, changes of the elements in one
occurrence shall be propagated via update functions to all other corresponding instances. Moreover,
further combinations of domains shall get integrated at anytime.

In this way, changes which take place throughout the product development process can easily be
integrated in the model. In this way, further promising combinations of domains can be considered in
structural analysis.

4 A MORE FLEXIBLE MODELING APPROACH
The presented modeling tool consists of two main parts. With the palette on the right area of the
modeling tool the user can select a category of components and drop it on the canvas (see Figure 1).

Al T p— [
Ca nvas = FOICLLE I#
» Selert
— i1 Marguee
h!'-"h" Type: - 5 _.+Domain Lo 9
N Sy | S .
1 ®Element & =, Entities
+* == Entities
E\Iﬂﬁ : : - [} = enitities
----------- .'-----\-.\n,;--'_ ~
:] clement
LEFT | _
- | Uomain
RelationType-r\\ Mstrix Frame
— I
Felatign Type

Figure 1. The main parts of the modeling tool

The first component which we will start with in this example is the domain. A domain is simply
illustrated as a node that is labeled by its name. It can be selected from the palette similar to all other
components and located everywhere and freely moved on the canvas (see arrow no. 1 in Figure 1). A
domain consists of a number of elements. An element can be created from the palette (similar to the
domain) and can be assigned to a domain afterwards. Therefore, the user can drop the element on the
area of an already created domain (see arrow no. 2 in Figure 1). In order to change the name of a
component, the user can double-click the component or select the component and type the name
directly. Pressing the Enter key will close the small text editor, quit the editing session and update all
other occurrences of this element.

20

The main component of the presented tool is a matrix frame. A matrix frame is a container of relations
between elements of two domains and enables the user to define values for each relation between the
elements of the domains. In order to create a matrix frame, the user can choose a matrix frame
component from the palette and drop it on the canvas (see arrow no. 3 in Figure 1). A matrix frame
area consists of three smaller parts, namely relation type, top domain and left domain. The title on the
top of a matrix frame presents the type of the relation between the elements of the modeled domains.
This relation type is represented as a relation type component. In analogy to previous components, a
relation type is also illustrated as a node on the canvas. To define the relation type of a matrix frame,
the user has to drag the relation type component on the top area of the matrix frame (see arrow no. 4 in
figure 1). The title of the matrix frame changes subsequently. The user can replace this type by
dropping another relation type component on the matrix frame anytime. The other two areas on the
matrix frame are labeled with Top and Left and can intuitively be recognized as the dropping areas of
two domains. To do so, the user can drag an available domain component from the canvas and drop it
on the intended area (see arrow no. 5 in Figure 1). After dropping the second domain component the
user will notice that a cell editor for the relations is created automatically at the center of the matrix
frame (see Figure 2).

Relation Type: Decomposition
Function
T = 1= Tl @ 3EAEARA RS
§E§§ EIE“EEIEIEI:‘
¢elal<lalSlz]l 2|2zl E]|25]|2
HHHEEEHIHHEHEHEE
s|lal3|a|&|8|8|8|&]|a[5]|S]SE
Drive Lpivy]tie
Displace_Conventional
Load_battery

Displace_electrical

Recuperate_electrical ce" EditOI’

Boost

Function | Convert_mech_rotational_to_mech_translational_energy

Convert_electrical_to_mech_rotational_energy

Regulate_electrical_energy

Store_electrical_energy

Convert_chemical_to_electrical_energy

Convert_mech_rotational_to_electrical_energy

Convert_mechanical_translational_to_mech_rotational_energy I_-I

Figure 2. A matrix frame DSM editor with integrated domain ‘‘function” and
relation type “decomposition”

Depending on which domains are dropped, a DMM cell editor or a DSM cell editor will be shown.
The relation value between two elements can be edited directly by typing the value. Modifications
(rename, remove and add) applied to components (domains, relation types and elements) on the canvas
will lead to modifications of this component in all matrix frames that contain this modified
component. This is possible since matrix frames have a number of pointers to the objects of relation
type, domain and element and listen to their changes.

5 CONCLUSION AND OUTLOOK

During the planning and development process of innovative products diverse changes of the product
architecture occur. Changes are often discovered in the late phases of the product development process
and lead to costly modification of all affected parts of the system and consequently into change
impacts of used models. The widely used hierarchically modeling approach is one particular limitation
of common modeling techniques. Promising combinations of domains which are not considered in
early modeling phases cannot easily integrated in the model. Therefore, the authors presented a more
flexible modeling technique. This technique allows for modeling components of different level of
abstraction, such as domains, relation types or elements, at the same time. Moreover, promising
combinations of domains can be designed by adding a new matrix frame to the model at anytime.
Furthermore, in the proposed modeling tool modifications of components are propagated to all
instances of the components by the use of pointers to all occurrences. In this way the user can model
system’s structure in a more flexible way. Changes of the system’s structure can be integrated in the
model at anytime. Further and deeper analysis can be performed by considering potential
combinations of domains which come up in late phases of the product development process. To do so,
the user must not change the whole model. The user can easily add further views.

21

In future work the authors will enhance the presented modeling tool with transformation techniques. In
this way the authors want to enable different people modeling on same model instances of different
modeling paradigms in different times.

ACKNOWLEDGEMENTS

We thank the Deutsche Forschungsgesellschaft (DFG) for funding this research as a part of the
collaborative research centre “Managing cycles in innovation processes — Integrated development of
product service systems based on technical products” (SFB 768). ¢

REFERENCES

Abramovici, M. & Schulte, S. (2007). Optimising customer satisfaction by integrating the customer’s
voice into product development. In: Proceedings of International Conference on Engineering
Design, ICED 07, Paris, France.

Browning, T. (2001). Applying the Design Structure Matrix to System Decomposition and Integration
Problems: A Review and New Directions. /EEE Transactions on Engineering Management,
48(3), 292-306.

Danilovic, M., Browning, T.R. (2007). Managing complex product development projects with design
structure matrices and domain mapping matrices. International Journal of Project Management,
25(3), 300-314.

Kohn, A., Lindemann, U. (2010). Approach towards a more flexible handling of domains in complex
systems. In: Proceedings of 12th International DSM Conference, Cambridge, UK, Hanser.

Leimeister, J. M. & Glauner, C. (2008). Wirtschaftsinformatik, 50.

Lindemann, U. (2006). Methodische Entwicklung technischer Produkte: Methoden flexibel und
situationsgerecht anwenden. Springer, Berlin.

Lindemann, U. & Reichwald, R. (1998). Integriertes Anderungsmanagement. Springer, Berlin.

Lindemann, U., Maurer, M. & Braun, T. (2008). Structural Complexity Management: An Approach
for the Field of Product Design. Springer, Berlin.

Maurer, M. (2007). Structural Awareness in Complex Product Design. Lehrstuhl fiir
Produktentwicklung, TU Miinchen, Miinchen.

Pulm, U. (2004). Eine systemtheoretische Betrachtung der Produktentwicklung. Fakultat fiir
Maschinenwesen, Technischen Universitdt Miinchen, Miinchen.

Steward, D.V. (1981). The design structure system: A method for managing the design of complex
systems. I[EEE Transactions on Engineering Management, 28, 71-74.

Yassine, A., Whitney, D., Daleiden, S., Lavine, J. (2003). Connectivity maps: modeling and analysing
relationships in product development processes. Journal of Engineering Design, 14(3), 377-394.

Contact: Sebastian Kortler
Institute of Product Development
Technische Universitdt Miinchen
Boltzmannstraie 15

D-85748 Garching

Germany

Phone: +49 89 289 151 53

Fax: +49 89 289 151 44
e-mail: kortler@pe.mw.tum.de
http://www.pe.mw.tum.de

22

A More Flexible Way of Modelling
Structure with Multiple Domains

w

Sebastian Kortler, Bergen Helms,
e Kristina Shea and Udo Lindemann

'*i;r

(1

.
X

g

Institute of Product Development, Technische Universitat Miinchen,

ﬂ%h

h\" Germany
.
L mem
o (11—
20—
i S
Index

* Background and motivation

* The common 5-step MDM-procedure

* The fundamentals of a more flexible modeling technique

* A modeling example

* Conclusion

e Future work

13th International DSM Conference 2011- 2

23

Background and Motivation

» During the planning and development process of innovative products
diverse changes of the product architecture occur

* Changes are often discovered in the late phases of the product
development process and lead to costly modifications

+ Changes of the product architecture lead to change impacts of used
models

* The widely used hierarchically modeling approach is one particular
limitation of common modeling techniques not allowing for the required
degree of flexibility

* The initial assigning of used elements to domains and the combination of
domains in early modeling phases may lead to restrictions in later
analysis of the system’s structure

* The research presented in this paper aims to tackle this challenge with a
more flexible way of modeling structure with multiple domains

nternational DSM Conference 2011- 3

The Common 5-Step MDM-Procedure

e [A o
.EI .,.‘ a _ a
Step 1 System Definition [Mu"'iﬁ,{gimam
=
S 3 Information 9‘@:% Direct Dependencies
E Acquisition ' }7@"\ of the System

Deduction of
Step 3 indirect
Dependencies

Structure
Step 4 Analysis I; ‘é::

Indirect
Dependencies

Identification of
Structural Criteria

Interpretation 2 2 e
Step 5 of Structural A /j‘ System Behavior
Criteria 7 T2 T2

e e e e

(Lindemann, U., Maurer, M. & Braun, T. (2008). Structural Complexity Management:
An Approach for the Field of Product Design, Springer, Berlin)

13th International DSM Conference 2011- 4

The Common 5-Step MDM-Procedure

» If changes occur during the product development process, such as

requirements’ changes in the late phases of the development process,
the user needs to apply changes in all phases of the five-step procedure

Step 1 System Definition R
A1)

. W
Information (2 %

Step 2 Acquisition 3

Step 3

Deduction of
indirect
Dependencies

* A more flexible modeling approach would be useful

13th International DSM Conference 2011- 5

The Fundamentals of a More Flexible Modeling Technique

« Offering the possibility to model elements of different levels of abstraction

at the same time

— Defining domains, relations between domains, relation types and
relations between elements independently during the whole modeling

process

— Instances of the modeled components (domains, elements and

relation types) shall be (re-)used in different matrices, i.e. in different

contexts

— Changes of the elements in one occurrence shall be propagated via
update functions to all other corresponding instances

— Further combinations of domains shall get integrated at anytime

Performing all the modeling steps at the same time

[] A a
Y

System o)
Definition

=

Information ﬁfj@‘%
Acquisition & /

Deduction
of indirect
Dependencies

13th International DSM Conference 2011- 6

25

A Modeling Example

* In the first step of this example model the designer started with:
* The domain persons and process steps
* 5 persons
* 4 process steps ehdl
T vt
Didnyien
=lrres
Jzmizrl
e
W oaras
Gowiw Tapc
Mazsra Fruvz Haa
I'cxa ol
sl Lvwnglojanaians
Tun Moo way Swee Friniel =
SR L Iwmgrirg Darmpnaenic
Zare
i
h 13th International DSM Conference 2011- 7
A Modeling Example
* In the second step the designer performed some updates:
* a matrix frame connecting process steps and persons
* 5 dependencies between process steps and persons
LRI H - e Bl H Fromea Sler.
Tonun i lzoriiv ook
= i L B B Rt o
é | = f i Tos [R TS I - R HIE Y
alella CEAnar Joyang Canszuani
T b 1 wttded
_ Jardry Toucrrrls 1
Praccie3gn
Darary Lo des Fisidda 1
Tisloming Comperams

13th International DSM Conference 2011- 8

A Modeling Example

* In the third step the designer performed some updates:
» afurther person (Alex) — the matrix frame is updated
» a further process step (Designing Functions)) — the matrix frame is

updated
* 1 relation type (performs)
igshzn spe- Perszng #rogerg g
JLILE Pzic ldoril hocoss
5 I SMTA L LIren e
| = i : 4 Tuss Lo ming Suliac Friczlae
tl ﬁl '3 i 1 hiim SAERRD G e
Iouani’e Muals 1 P Lo coniny Funzlvn
STt A urrarniene e 1 e
Froanza Mopa [Tareiry Aol Mo pha 1
Duaynng Cuermzurorls L]l wal e
SEgnnz lnseane

A Modeling Example

13th International DSM Conference 2011- 9

* In the fourth step the designer performed some updates:
» afurther person (Daniel) — the matrix frame is updated
» afurther process step (Quality Tests) — the matrix frame is updated
* 8 dependencies between process steps and persons
» the matrix frame is connected to relation type (performs)

werd i Ima

Foaiun Tepz palann Frazes: S —
Foim I'swr Izenity heeds
= . Eh I ra) ey rerserke
I:_i I-IE ! _E _-: -\.? 'E Rl Wt L ER PO R
Shiterdny Doeyrmg Cuernss s
Ty e 1
43rErE Teeging Mon-isee
darary fexaacrrorlks 1 1]1 .
Al iliaily Fik
durAargaoTes 'naciza 1 1
I¥izzmr g Jund
TLmaviony Crarqueasn
heenmg | onshere 101 1 i
L

13th International DSM Conference 2011- 10

27

A Modeling Example

* In the fifth step the designer performed some updates:
» a further matrix frame connecting (Persons, Persons)
» a further relation type (connected via process steps)
» the new matrix frame is connected to relation type (connected via
process steps)
* indirect dependencies (persons, persons)

Mk lew. pa=ioenns arvo poiecs Jop Fidirin 7o 0w s e I"3.an 1oL g
=3 (S *Hr Talr ey beal
;1 - - -I -I"\-II_|=.| TS B
HE1R E E g :'; o] = £l - e Lars o5 v el
= I - = B P-4 I Il S - I - - I
. kA Lo bt o T T i Rt
carll= Lande 1 FE— Frcgg Ineriae
T)RRz T 1 | s Al Temr
A T J.i-:m."-f:-:!!.r-:!:l!: -1 1 -
TR L LT i)1
Lumgrarg taroiore 1|1 1|1 sATRTTE
ok ek L
[L A P PR e

13th International DSM Conference 2011- 11

A Modeling Example

* In the sixth step the designer performed some updates:
» afurther process step (Documenting Processes) — the matrix frames
are updated
* 1 dependency between process steps and persons

* renaming of relation type (performs) -> (is responsible for) — the
matrix frames are updated

1dahz Ippas cormesszd s £ pronoa ks BliieTyus o cmrmandl- o [TI— Mo ol
Pupeiae P'aussrs oma RIETEARE T
) j e z s - Ivh SarngFagaicrian
N E HEIE T REITH R Tin Saree Gareell 2l
|s|F] e)T = = R
[L 1 mrhan PUENST RSRAT TT TRCTEY
! kniily Lorenl- 1 -
Ut : Fwnna I i I S H
E e [
: \ Uz rang Gzuanmzrke 1 - 4 - =3l Teee
i (15 SREE TR b HEEH 1 H . -
Fe [} _ , ~ - - Lasw L T L L L Lo
S R 1ot mer Wz Uaynsy tenaars b . |d
g cmempr g
e THE R e H 1]: 1]- ® rmpone bl "'l
M inol=y ladr
Lurnd [P S— EDET FI_TE TRy TR lJ!.--.l

13th International DSM Conference 2011- 12

28

A Modeling Example

* In the seventh step the designer performed some updates:
a further domain (Resources) with 4 elements
a further matrix frame (Process Steps, Resources)

10 dependencies

[Retnype-] | Peeer Proces: Step:
Resources Peter Identify Needs
5] Bob Deriving Requirements
El =l =1 - — - —
5 g 3 E Tom Deriving Active Priciples
Il =l e = Christian Designing Components
Identify Needs 1 Sandra Designing Functions
Deriving Requirements 1 Alex Quality Tests
Deriving Active Priciples |1 | 1 Daniel Documenting Processees
Process Steps | Designing Components 1
— - Resources | is responsible forl
Designing Functions 1)1
Computer 1
Quality Tests 1 -
Room 1 |connected via process stepsl
Documenting Processees| 1 1
Computer 2
Room 2

A Modeling Example

* In the eight step the designer performed some updates:
2 further relation type (needs, connected via resources)
the matrix frame (process steps, resources) is connected to relation
type (needs)
the matrix frame (process steps, process steps) is connected to
relation type (connected via resources)

indirect dependencies (process steps, process steps)

m i

13th International DSM Conference 2011- 13

[FeonTpecomectedvresowcss [RedtonTypeneeds | Py o
Process Steps " Peter Identify Needs
=1 = = = = Bob Deriving Requirements
HEEHEHEE HEIH
E |2 2| 2| £ 3 3 E 3 g Tem Deriving Active Priciples
| 5|58 S H]
=8| 8| &l 8| S| 8 S| &| 3| &| |christian| | Designing Components
Identify Needs 1 1 Identify Needs 1 Sandra Designing Functions
Deriving Requirements 1 Deriving Requirements 1 Alex Quality Tests
Deriving Active Priciples 2 Deriving Active Priciples | 1 | 1 Daniel Documenting Processees
Process Steps | Designing Components Process Steps | Designing Companents 1
— - Resources |is responsible lor|
Designing Functions Designing Functions 111 I
e e =
> — Room1
ocumenting Processees Dy nting P 1 1
g ocumenting Processees Comp 2
Room 2 | connected via rgs«uurce-;|

Lyl

13th International DSM Conference 2011- 14

29

