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Abstract: Dependency structure models, or their equivalent dependency network
models, can be analyzed for identifying critical components of a product architecture
— elements within the architecture that, if changed, can have a significant impact on
the rest of the system. In this paper we propose a discrete-time Markov chain-based
algorithm to analyze dependency structure models of several product architectures to
not only identify but also rank such components in order of their criticality.
Identifying and ranking these elements allows prudent allocation of resources on a
project to mitigate any risks that result from changes made to an architecture as a
product evolves. The results show that the proposed algorithm is more effective when
compared to other algorithms, namely betweenness centrality, closeness centrality
and eigenvalue centrality, that have been used on dependency network models to
identify and rank critical components.
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1 Introduction

Designing product architectures involves design decisions that address requirements which
have an overall impact on the quality of the whole system. These architectural design
decisions are embodied in a product’s components, their relationship to each other and to
the environment in which they operate (Eppinger and Browning, 2012). Because of their
systemic nature, any changes to these architecturally significant components entails a risk
that these changes can propagate to other parts of the system and can have far reaching
consequences impacting the overall quality of the system.

As products evolve over time, however, they can become quite complex and so do their
architectures. Managing this complexity involves maintaining an up to date model of the
dependencies of product components to each other and to their operating environment.
Dependency Structure Models or Matrices (DSM) have been used for this purpose
(Steward, 1981). DSMs or their equivalent dependency network models have been further
analyzed using clustering algorithms to understand the product modularity (Schaeffer,
2007), change propagation (Clarkson ez a/, 2004) and, reliability and availability (Wilschut
et al, 2017). Browning (2016) provides a comprehensive survey of these extensions.

In this paper, we use DSMs and analyze their equivalent dependency network models to
rank components based on how critical they are within a product architecture. There are a
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number of well-known ranking algorithms, such as betweenness centrality (BC), closeness
centrality (CC), and eigenvector centrality (EC) for this purpose (Landherr et al, 2010).
Each ranking algorithm takes a different approach to determining the criticality of a
component, capturing different network characteristics and thus resulting in different
ranking orders (Lu et al, 2016). For example, BC and CC are path-based centrality
measures whereas EC is an iterative refinement centrality algorithm. BC ranks highly
those components that are frequently located on as many of the shortest path between pairs
of other components within a network; CC favors components that are closest to most of
the other components in a network; and EC favors components if they are well-connected
to other highly ranked components within a network. Due to their specific and narrow focus
(supported by the results of our analysis presented later in the paper), however, no single
measure was effective at identifying those elements within a product architecture that
experts considered significant.

Consequently, we have developed a Discrete-time Markov chain (MC) based ranking
algorithm that has a broader focus and more comprehensive approach to identifying
important elements of complex networks. MC, gives more weight to components that have
a high indegree, are connected to other components with high indegree, and frequently lie
on the shortest paths between other components within the system. As such it detects
components that have greater structural significance and, therefore, greater risk of
propagating their changes and faults to other parts of the system.

MC creates a dependency network model by analyzing dependencies of a component of a
system (for instance, from a dependency structure model) and treats the resulting network
as a discrete-time Markov chain (DTMC), a concept used for stochastic modeling of
complex systems (Srinivasan & Azadmanesh, 2007) that has been applied extensively to
different areas of complex systems development (Davis 2018, Puterman 2005, Prowell
2005, Gomez et al 2010). Within a DTMC, every component has a weight that is
propagated to its neighbors along its outgoing edges. Initially, all components are assigned
equal weights. Once a component receives the weights from all its neighbors along the
incoming edges it updates its weight. If the propagation of weights is performed over and
over again in multiple rounds, then after several rounds the component graph will attain a
stationary-convergence. Once the final weight of each component in the component graph
is determined, MC ranks the components in the decreasing order of their weight i.e. a
component having higher weight than other components is ranked higher thus determining
the relative significance of the different components within the system under study.
Detailed description of the MC algorithm can be found in Srinivasan et al (2017).

The rest of the paper is organized as follows. In section 2, current studies relevant to
analysis of dependency network models and ranking of important elements within a
dependency network model are reviewed. Section 3 describes the ranking of components
by the different ranking algorithms using a simple dependency network model as an
example. Section 4 compares the merits of the different ranking algorithms using various
product architecture case studies explored in detail in Eppinger and Browning (2012)
discussing the implications of each algorithm for ranking components. Finally, Section 5
concludes this study.
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2 Related Work

SPARS system uses analysis of dependency networks to rank components for Java-based
systems (Inoue et al., 2005). Baker et. al. (2006) use greedy and simulated annealing
algorithms to address a component ranking problem to support identification of
components that best suits a target system. Neuhaus ez. al. (2007) have proposed ranking
of software components to investigate their vulnerability. Garvey and Pinto (2009)
represented engineering systems as a directed graph where nodes depict the direction,
strength, and criticality of supplier-provider dependency relationships. They proposed
Functional Dependency Network Analysis (FDNA) method which analyzes criticality of
nodes and dependencies in order to understand ripple effects of service failures. Guariniello
and DeLaurentis (2013) have adapted the FDNA to System of Systems (SoS) analysis
where architecture of SoS is modeled as a directed graph to study critical capabilities in
operational SoS networks. Development Dependency Network Analysis (DDNA) is
another directed graph model which quantifies the effect of dependencies on SoS
development time. Analysis of dependency networks has been used to rank functionally
important methods in complex software systems such as Google Chrome (Pakhira and
Andras, 2012).

There are numerous measures and methods for identifying critical nodes of a network. Lu
et al. (2016) have provided a systematic review of the metrics and methods for identifying
important nodes of a network. Network metrics have been used to determine critical
components of system architectures as well (Okami ez al, 2017, Bartolomei et al, 2012,
Santana et al, 2016). Yang and Xie (2016) have reviewed various measures for ranking
social networks and proposed a multi-attribute ranking method which combines various
measures for a weighted evaluation of social network nodes.

Whereas centrality measures have been shown effective at identifying a network’s most
influential nodes, they are not as useful in quantifying the impact on a network of those
nodes that are not highly influential, yet make up the vast majority of the network. This has
given rise to node influence metrics including expected force (Lawyer, 2015) and
accessibility (Travencolo and Costa, 2008). These metrics are based upon epidemiological
models of infection and spreading that likely have meaning in engineered systems also.

While there are different network metrics for identification of critical nodes, it is important
to understand the implications of using these metrics for different network structures. This
study extends current studies by utilizing DSM as means to construct Markov chain
dependency networks for identification of architecturally significant components.

3 Component Ranking Strategies

Using the DSM shown in Figure 1(a) and its equivalent dependency network model in
Figure 1(b), we illustrate the ranking of the components in the network using MC, EC, CC
and BC algorithms. Through this contrived example, we demonstrate the differences in the
ranking strategies these algorithms use.
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(c) Component Rankings
Figure 1. Rankings of components in a dependency network model using BC, CC, EC and MC

Figure 1(c) shows the rankings of components in the dependency network model using the
different raking algorithms. The sizes of the components are in proportion to their relative
rank with the largest sized component achieving the highest rank and the smallest sized
component achieving the lowest rank. We also label a node with its corresponding rank.

As the figure shows, BC ranks those components highly that appear on most of the shortest
paths between any pair of components within the network. For instance, components K, G
and H are ranked highly because most components in the lower half of the network must
communicate through them in order to reach the nodes in the upper half of the network.
CC ranks components A, D and G highly since they have close access to a significant
proportion of the other components in the network. EC ranks K, N and M highly because
they are connected to other components in the network that also have a high ranking. While
MC also ranks K, N and M highly its ranking strategy is multi-faceted. It tends to favor
those components that have a high indegree and also receive connections from other
components that have a high indegree. It also gives more weight to those components that
lie frequently on the shortest paths among of other components in the network. Therefore,
its overall ranking is different from EC. For instance, I has a higher indegree compared to
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J, O, and Q but is ranked lower because the latter have an incoming link from K (a node
ranked highly because of high indegree).

4 Comparative Analysis

Due to the diverse approaches these ranking algorithms take, we used each of them to
analyze the AW101 helicopter system described in Eppinger and Browining (2012) to
understand which algorithm may be most effective in identifying and ranking highly, the
critical components within that system. The systems described in this reference serve as
great examples for such studies because the authors have extensively explored each system
and provide an independent analysis of critical elements based upon the expertise of senior
engineers familiar with those systems. This forms the basis of the ideal ranking against
which the automatic approaches are assessed shown in Table 1. We call this ranking ideal
since this case study provides the rationale for why one component may be more important
than the other based on how influential they are in propagating the changes to other
components in the system.

Table 1. Ideal rankings of components of the AW101 helicopter model

Ranking Components Description
1 | Bare fuselage System  Description: Agusta Westland
2 | Cabling and piping produces helicopters, such as AW101, for
3 | Avionics civil and military applications. Their aircraft
4 | Flight control systems designs are often based on existing model,
5 | Auxiliary electrics but they also support redesigning a product
6 | Air Conditioning based on the specific needs of their
7 | Hydraulics customers. In that process, a change to a part
8 | Transmission of the product, however, results in changes to
9 | Equipment and other parts. The AW101 model is comprised
furnishings of 19 key components and §ubsystems. A

10 | Main rotor head change any one may impact other

11 | Fuel components.

12 | Ice and rain protection Rationale behind ranking its components:

13 | Tail rotor The 19 components of the AW 101 helicopter

14 | Fire protection model were ranked in such a way that a

15 | Engine auxiliaries change introduced Withip a highly ranked

16 | Weapons and defensive component has a high risk of propagating

systems changes to many other components in the

17 | Main rotor blades system.

18 | Fuselage additional Items

19 | Engines

We analyzed the AW101 dependency network model, created from the dependency
structure model, using the BC, CC, EC and MC. The results of their rankings and their
statistical significance are shown in Table 2. MC ranked most of the components highly
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consistent with the ideal ranking list (Column 2 of Table 2). However, the rankings by MC
(Column 3 of Table 2) were not exactly in the same order as listed in the ideal ranking list.

Table 2. Ideal ranking of the components of the AW101 helicopter model

Components Ideal Ranking MC BC CC EC
Bare fuselage 1 1 1 19 1
Cabling and piping 2 2 4 12 4
Avionics 3 3 8 8 3
Flight control 4 5 7 4 8
systems
Auxiliary electrics 5 6 3 16
Air Conditioning 6 9 12 17 7
Hydraulics 7 4 9 7 19
Transmission 8 7 16 13 12
Equipment and 9 8 10 3
furnishings
Main rotor head 10 11 13 1 13
Fuel 11 14 19 18 16
Ice and rain 12 18 6 15 18
protection
Tail rotor 13 10 11
Fire protection 14 16 17 10
Engine auxiliaries 15 13 5 11 10
Weapons and 16 12 15
defensive systems
Main rotor blades 17 17 14 14 17
Fuselage additional 18 15 18 5 15
Items
Engines 19 19 2 2 14
Spearman Rho Correlation 0.903 0.414 -0.321 0.6052
coefficient

p-value 22e-16  0.039 09113 0.00355

Kendall Tau b Correlation 0.766  0.333 -0.2514 0.4152
coefficient

p-value 1.488e-07 0.0245 09376 0.00641

Precision@k Precision@5 0.8 0.6 0.2 0.8
Precision@10 0.9 0.7 0.5 0.7

Precision@15 0.87 0.8 0.73 0.8

MAP 0.86 0.70 0.47 0.77

For statistical analysis, we employed two nonparametric ranking correlations, Spearman’s
Rho and Kendall’s Tau-b, to measure the strength of relationship between two ordered
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variables, the ideal ranking and the ranking by one of the other algorithms. A high value
of associativity (close to 1) indicates a strong relationship between the two rankings. The
results show that MC has the highest correlation coefficient and p-values were significant
(0=0.01).

We also drew upon an information retrieval evaluation statistic, Precision@k commonly
used to compare ranked search results. Precision@k measures the ratio of the total count
of the number of components that are ranked in the exact same order by a ranking algorithm
when compared with the ideal ranking, to the total number of ranked components. So, while
the ranking correlations assess the similarity of the rankings with the desired ideal rank,
the Precision@k metric or Mean Precision@k (MAP) assesses the relative positions of the
components in each ranking. As shown in Table 2, the precision@k (k = 5, 10, 15) and
MAP values for MC are superior when compared to the other algorithms.

We repeated this study with three other systems, namely, Pratt & Whitney’s commercial
aircraft jet engine, Xerox’s digital printing system, and Kodak’s single use camera, using
their dependency structure models from Eppinger and Browning (2012). For all three
product architectures, both MC and EC resulted in a p-value less than 0.01 for both the
Spearman’s Rho and Kendall’s statistic thus indicating that the null hypothesis can be
rejected. Therefore, it can be concluded that the ranking for MC and EC are positively
correlated with the ideal ranking of the components in all the three product architectures.
Although the p-values were significant for EC, the Spearman Rho and Kendall Tau
correlation coefficients were relatively less when compared to MC, indicating that MC’s
performance was superior. MC also produced superior precision@k and MAP values for
all but Xerox’s digital prinitng system for which EC recorded better performance. Table 3
shows a summary of these results.

Table 3. Correlation Coefficients, Precision@k for different ranking algorithms

Correlation Coefficient MC BC cC EC
(p-value)
Commercial aircraft jet engine, Pratt & Whitney, USA
Spearman Rho 0.964 0.320 0.191 0.527
(p value) (2.2¢-16) (0.009) (0.08) (2.75¢-05)
Kendall Tau 0.853 0.235 0.127 0.403
(p value) (2.2¢-16) (0.005) (0.08) (8.36¢-06)
Precision@5 1.0 0.4 0.2 0.6
Precision@10 1.0 0.6 0.5 0.8
Precision@!5 0.93 0.53 0.33 0.6
MAP 0.98 0.51 0.34 0.67
Digital printing system, Xerox, USA
Spearman Rho 0.836 0.290 0.310 0.721
(p value) (2.2e-16) (0.003) (0.002) (2.2¢-16)
Kendall Tau 0.650 0.223 0.218 0.554
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(p value) (2.2¢-16) (0.001) (0.001) (4.21e-14)

Precision@5 0.4 0.4 0.2 0.6

Precision@10 0.4 0.3 0.4 0.8

Precision@]15 0.66 0.4 0.33 0.6

MAP 0.49 0.37 0.31 0.67
Single use camera, Kodak, USA

Spearman Rho 0.965 0.418 0.086 0.910

(p value) (2.2¢-16) (0.01) (0.324) (9.311¢-08)

Kendall Tau 0.857 0.314 0.089 0.756

(p value) (6.66¢-16) (0.007) (0.250) (1.17e-11)

Precision@5 0.8 0.4 0.2 0.8

Precision@10 0.9 0.5 0.4 0.8

Precision@]15 0.933 0.6 0.533 0.866

MAP 0.877 0.5 0.377 0.822

We do not provide the ideal ranking of the components for these product architectures as
they have components that range from 19 to 84. The rationale behind ranking of their
components are summarized below based on the DSMs and description of the product in
Eppinger and Browning (2012).

L.

Commercial aircraft jet engine, Pratt & Whitney, USA: 54 components across
different subsystems were ranked based on how many interfaces it had with other
components in the system. Components with higher number of interfaces were ranked
higher. The components belonging to the subsystems that interfaced with other
components across different subsystems were also ranked higher.

Digital printing system, Xerox, USA: The 84 components of the Xerox iGen3 printing
system were ranked based upon the number of interfaces it has with other components
in the system. Also, a component that interfaces with many components in the system
were ranked higher.

Single use camera, Kodak, USA: The components that have many common
interactions with other components were ranked higher. Following the components
with common interactions are the components that have variant and unique
interactions.

5 Conclusion

This paper explored four different ranking algorithms, including one that we have
developed, each offering a different perspective on ranking components within a given
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system. BC gives more importance to components that lie more frequently on the shortest
paths between components of a system, CC deems components that have access to most
other components within a system as significant, and EC ranks highly those components
that are well connected to other highly ranked components. Our proposed ranking
algorithm, MC, gives more weight to components that have a high indegree, are
connected to other components with high indegree, and frequently lie on the shortest
paths between other components within the system. As such it detects components that
have greater structural significance and, therefore, greater risk of propagating their
changes and faults to other parts of the system.

In our future work we will expand the analysis to a larger set of product architectures and
explore alternative network algorithms including node influence metrics such as
accessibility and expected force, both of which have meaning with respect to change
propagation and network resilience.
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